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Abstract. In this paper we discuss the Lie symmetries, symmetry algebra and similarity
reductions of two different equations introduced in the recent literature, namely, (i) a new
coupled integrable dispersionless equation and (ii) a new coupled hyperbolic variational equation.
We point out that both the systems admit, in contradistinction to conventional Lie algebras in
(1+1)-dimensional systems, infinite-dimensional Lie algebras. Furthermore, we find physically
interesting solutions for special choices of the symmetry parameters.

1. Introduction

One of the most powerful methods available to analyse nonlinear partial differential
equations (PDEs) is the method of Lie groups [1–3]. An important feature of this method
is that one can derive special solutions associated with nonlinear PDEs straightforwardly
which are otherwise inaccessible through other methods [4–6]. The basic idea of the Lie
group method is to seek the symmetry groups associated with a given differential equation
under a continuous group of transformations and to find a reduction transformation from
the symmetries. For PDEs, the reduction transformation can be used to reduce the number
of independent variables by one; for example, a PDE with two independent variables to an
ordinary differential equation (ODE). For a reduced ODE, one can check whether it is of
Painlev́e (P-) type or not and it is often the case that when the reduced ODE is of P-type
it can be solved explicitly thereby leading to a solution of the original PDE [4].

In this direction some recent works have been devoted to the study of the symmetry
groups of certain higher-dimensional nonlinear evolution equations in(2+ 1) dimensions,
which are generalizations of(1+ 1)-dimensional soliton equations, and it has been found
that all these equations admit infinite-dimensional Lie point symmetry groups often with a
specific Kac–Moody–Virasoro structure [7–11].

In contrast to the(2 + 1)-dimensional cases, solitons possessing nonlinear PDEs in
(1+ 1) dimensions generally admit only finite-dimensional point symmetry groups even
though there are exceptions. As is already known, systems such as the Korteweg–de Vries
(KdV), modified KdV, sine–Gordon, nonlinear Schrödinger, Heisenberg spin chain and so
on [4] admit only finite-dimensional symmetry groups. However, there are other systems
such as the Liouville equation, fourth-order shallow water equation [12] and the integrable
dispersionless equation [13] which admit infinite-dimensional Lie point symmetry groups.
It is possible that this list may include more examples. Of course the linear wave equation
uxy = 0 possesses an infinite-dimensional Lie algebra. Even in these cases the existence of
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Virasoro-type subalgebras has not been explored. Although the question is wide open as to
whether integrability in(1+ 1) dimensions is correlated to the structure of the Lie algebra
of infinitesimal symmetries, it is of considerable interest to identify such nonlinear systems
and analyse their symmetry algebras. In this paper we wish to point out the existence
of infinite-dimensional Lie point symmetries in two other important physical systems in
(1+ 1) dimensions, namely a new coupled integrable dispersionless equation [14] and a
new nonlinear hyperbolic variational equation [15], which arise in two different contexts,
and explore the existence of infinite-dimensional Lie algebras in both systems. From the
Lie symmetries we find similarity variables which in turn are used to reduce PDEs into
ODEs. For the reduced ODEs we have analysed their integrability properties. We have also
found interesting solutions for some particular cases.

The plan of this paper is as follows. In section 2 we investigate the Lie symmetries
and similarity reductions associated with the new integrable dispersionless equation. We
also find physically interesting solutions for special choices of symmetry parameters. In
section 3 we investigate the invariance properties of the new integrable nonlinear hyperbolic
variational equation. We find explicit solutions for some particular cases. In section 4 we
present our conclusions.

2. Invariance analysis of the new coupled integrable dispersionless equation

2.1. Lie symmetries and similarity reductions

Recently, Konno and Oono have introduced a new coupled integrable dispersionless equation
which is of the form [14, 16]

qxt + (rs)x = 0 (2.1a)

rxt − 2qxr = 0 (2.1b)

sxt − 2qxs = 0. (2.1c)

By assuming thatr = s they have shown that the resultant system is solvable by the inverse
scattering method. This special case has also been discussed by different authors in different
contexts [17, 18]. However, quite recently the generalized form, equation (2.1), has been
studied through the inverse scattering method and some remarkable soliton properties have
been found [14, 19, 20]. In this work we clarify the invariance and integrability properties
through the Lie group method.

The invariance of equation (2.1) under the one-parameter Lie group of infinitesimal
point transformations,

x −→ X = x + εξ1(t, x, q, r, s) (2.2a)

t −→ T = t + εξ2(t, x, q, r, s) (2.2b)

q −→ Q = q + εφ1(t, x, q, r, s) (2.2c)

r −→ R = r + εφ2(t, x, q, r, s) (2.2d)

s −→ S = s + εφ3(t, x, q, r, s) ε � 1 (2.2e)

leads to the expressions (obtained by using the computer program MUMATH [21])

ξ1 = f (x) ξ2 = −(k1t + k2) φ1 = k1q + g(t) φ2 = (2k1− k3)r

φ3 = k3s (2.3)
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wherek1, k2 andk3 are arbitrary constants andf (x) andg(t) are arbitrary functions ofx
and t , respectively. Thus the system admits a set of infinite-dimensional Lie vector fields
of the form

V = V1(f )+ V2(g)+ V3+ V4+ V5 (2.4)

where

V1(f ) = f (x) ∂
∂x

(2.5a)

V2(g) = g(t) ∂
∂q

(2.5b)

V3 = −t ∂
∂t
+ q ∂

∂q
+ 2r

∂

∂r
(2.5c)

V4 = − ∂
∂t

(2.5d)

V5 = −r ∂
∂r
+ s ∂

∂s
. (2.5e)

The non-zero commutation relationsamong the vector fields (2.5) are given by

[V1(f1), V1(f2)] = V1(f1f
′
2 − f2f

′
1) (2.6a)

[V2, V3] = V2(g + t ġ) (2.6b)

[V2, V4] = V2(t ġ) (2.6c)

where prime and dot denote differentiation with respect tox and t , respectively. It is
interesting to note that, unlike the case of conventional Lie algebras of(1+ 1)-dimensional
systems which are usually finite dimensional, the presence of arbitrary functions,f (x)

and g(t) in the infinitesimal symmetries, leads to an infinite-dimensional Lie algebra.
Furthermore, it is interesting to note that by restricting the arbitrary functionsf and g
to be Laurent polynomials we obtain a Kac–Moody–Virasoro-type subalgebra in the form

[V1(x
m), V1(x

n)] = (n−m)V1(x
n+m−1) (2.7a)

[V2(t
m), V2(t

n)] = 0. (2.7b)

The similarity variables associated with the symmetries (2.3) can be obtained by solving
the following characteristic equation:

dx

f (x)
= dt

−(k1t + k2)
= dq

k1q + g(t) =
dr

(2k1− k3)r
= ds

k3s
. (2.8)

Solving equation (2.8) we obtain the following similarity variables,

z =
∫ x dx ′

f (x ′)
+ 1

k1
log(k1t + k2) (2.9a)

F = (k1t + k2)q +
∫ t

g(t ′) dt ′ (2.9b)

G = r(k1t + k2)
p (2.9c)

H = s(k1t + k2)
k3/k1 (2.9d)

where p = (2k1 − k3)/k1. Under this set of similarity transformations, equation (2.1)
reduces to

F ′′ − k1F
′ +HG′ +GH ′ = 0 (2.10a)

G′′ + (k3− 2k1)G
′ − 2GF ′ = 0 (2.10b)

H ′′ − k3H
′ − 2HF ′ = 0 (2.10c)
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where the prime stands for differentiation with respect toz.
In order to solve the nonlinear ODE (2.10) resulting from the similarity reduction,

further investigations are necessary. As a first step, in order to check whether the reduced
ODE is integrable or not, we first perform a P-analysis for equation (2.10).

2.2. Painlevé analysis

To begin with we represent the solution to equation (2.10) locally as a Laurent series and
let the leading order be of the form

F = a0τ
p G = b0τ

q H = c0τ
r τ = t − t0→ 0 (2.11)

wheret0 is a movable singular point. Substituting (2.11) into (2.10) and equating the most
singular terms we getp = −1, q = −1, r = −1 with the corresponding coefficient values
asa0 = −1 andb0c0 = −1, so thatb0 or c0 is arbitrary.

By substituting

F = −τ−1+
∞∑
n=1

anτ
n−1 (2.12a)

G = b0τ
−1+

∞∑
n=1

bnτ
n−1 (2.12b)

H = −1

b0
τ−1+

∞∑
n=1

cnτ
n−1 (2.12c)

in equation (2.10) and equating the various powers ofτ to zero we find that

a1 = arbitrary b1 = −k3− 2k1

2
b0 c1 = − k3

2b0
(2.13a)

a2 = arbitrary b2 = −b0a2 c2 = a2

b0
(2.13b)

a3 = 0 b3 = arbitrary c3 = b3

b2
0

(2.13c)

a4 = 2(b4− k1b3)

3b0
+ a

2
2

3
+ k3b3

3b0
b4 = arbitrary c4 = −b4− k1b3

b2
0

(2.13d)

and all the other higher-order coefficients are then determined uniquely in terms of the
earlier coefficients.

Thus the Laurent series solution (2.12) is meromorphic and possesses a sufficient number
of arbitrary constants (t0, b0, a1, a2, b3 andb4). Consequently, the ODE (2.10) possesses
the P-property.

2.3. Soliton solutions

Even though it is very difficult to obtain the general solution associated with equation (2.10)
we can obtain many interesting particular solutions by assuming special choices of the
infinitesimal symmetries. For example, by choosingf (x) = constant,g(t), k1, k3 = 0 and
k2 = −1 in (2.3) we get the travelling wave variablez = x − ct , q = F(z), r = G(z) and
s = H(z). Under these similarity transformations the reduced equation becomes

F ′′ − 1

c
HG′ − 1

c
GH ′ = 0 (2.14a)
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G′′ + 2

c
GF ′ = 0 (2.14b)

H ′′ + 2

c
HF ′ = 0. (2.14c)

Integrating equation (2.14a) once we obtain

F ′ = I1+ HG
c

(2.15)

whereI1 is an integration constant. Substituting (2.15) in (2.14b) and (2.14c) we get

G′′ + 2I1

c
G+ 2HG2

c2
= 0 (2.16a)

H ′′ + 2I1

c
H + 2GH 2

c2
= 0. (2.16b)

Obviously the system (2.16) admits an integral

HG′ −GH ′ = I2 (2.17)

whereI2 is a second integration constant. Using equation (2.17) in equation (2.16a), we
can eliminate one variable H, and the resultant equation takes the form

GG′′′ − 3G′G′′ − 4I1

c
GG′ − 2

c2
I2G

2 = 0. (2.18)

For I2 = 0 equation (2.18) admits an integral of the form

GG′′ − 2G′2− 2I1

c
G2 = I3 (2.19)

where I3 is the third integration constant. The first integral associated with the above
equation can be written as [22]

G′2 = I4G
4− 2I1

c
G2− I3

2
(2.20)

whereI4 is the fourth integration constant. The general solution of equation (2.20) can be
expressed in terms of elliptic functions, a special case of which is

G =
√

2I1

cI4
sech

[√
−2I1

c
z + δ

]
(2.21a)

H = −
√

2I1I4c3 sech

[√
−2I1

c
z + δ

]
(2.21b)

F ′ = I1

[
1− 2c sech2

[√
−2I1

c
z + δ

]]
(2.21c)

provided−2I1/c is positive andI3 is zero. Rewriting the variablesz = x − ct , F = q,
G = r andH = s we get the bright and dark soliton-type solution derived by Konno and
Kakuhata [14].

2.4. Subcases

In addition to the above travelling wave solution one can also look for other particular
solutions of equation (2.10) that are invariant under the subgroup of the symmetry groups
which correspond to the Lie algebras (2.5). In the following we consider the following
non-trivial casesonly.
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Case (i).k1, k2, k3, g(t) 6= 0 andf (x) = 0
The similarity variables are

z = x F = (k1t + k2)q +
∫ t

g(t ′) dt ′ G = r(k1t + k2)
(2k1−k3)/k1

H = s(k1t + k2)
k3/k1. (2.22)

Under this similarity transformation the reduced equation takes the form

F ′ − GH
′

k1
− HG

′

k1
= 0 (2.23a)

G′ − 2

(k3− 2k1)
F ′G = 0 (2.23b)

H ′ + 2

k3
F ′H = 0. (2.23c)

Integrating equation (2.23a), we get

F = GH

k1
+ I1 (2.24)

whereI1 is an integration constant. Now integrating equation (2.23c), we get

F = log
I2

Hk3/2
(2.25)

whereI2 is a second integration constant. Solving equations (2.24) and (2.25) we obtain

G = k1

H
log

I2

Hk3/2
− I1k1

H
. (2.26)

Substituting (2.26) and (2.25) in (2.23b) we find a trivial solutionH = constant= I3 which
in turn leads to the following solution for (2.1),

q = −1

(k1t + k2)

∫ t

g(t ′) dt ′ + c

(k1t + k2)
(2.27a)

r =
[
k1

I3
c − I1k1

k3

]
(k1t + k2)

(k3−2k1)/k1 (2.27b)

s = I3

(k1t + k3)k3/k1
(2.27c)

wherec = log(I2/H
K3/2), through (2.25), (2.26) and (2.22).

Case (ii). k3, f (x), g(t) 6= 0 andk1, k2 = 0
The similarity variables lead to the invariant solution

q = I1

∫ x dx ′

f (x ′)
+ p(t) (2.28a)

r = I2 exp

[−2I1t

k3
− k3

∫ x dx ′

f (x ′)

]
(2.28b)

s = I3 exp

[
2I1t

k3
+ k3

∫ x dx ′

f (x ′)

]
(2.28c)

whereI1, I2 andI3 are integration constants andp(t) is an arbitrary function oft .
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Case (iii). k1, k2, g(t) 6= 0 andk3, f (x) = 0
The similarity reduction leads to the particular solution of the form

q = −1

(k1t + k2)

∫ t

g(t ′) dt ′ + I1

(k1t + k2)
r = I2

(k1t + k2)2
s = I3. (2.29)

Case (iv).k2, k3, f (x) 6= 0 andk1, g(t) = 0
The similarity variables are

z = −k2

∫ x dx ′

f (x ′)
− t F = q G = r exp

[−k3t

k2

]
H = s exp

[
k3t

k2

]
.

(2.30)

The reduced ODE takes the form

F ′′ +GH ′ +HG′ = 0 (2.31a)

G′′ − k3

k2
G′ + 2k2F

′G = 0 (2.31b)

H ′′ + k3

k2
H ′ + 2k2F

′H = 0. (2.31c)

Equations (2.31) can be integrated to obtain a third-order nonlinear ODE inG or H .
Although it is difficult to integrate it further, one can show that it satisfies the Painlevé
property.

Case (v).f (x), g(t) 6= 0 andk1, k2, k3 = 0
In this case we obtain a particular solution of the form

q = f (t) r = g(t) s = h(t) (2.32)

wheref (t), g(t) andh(t) are arbitrary functions oft .

Case (vi).k1, k3, g(t) 6= 0 andk2, f (x) = 0
The similarity variables are

z = x F = qt + 1

k1

∫ t

g(t ′) dt ′ G = rt (2k1−k3)/k1 H = stk3/k1. (2.33)

The reduced equation takes the form

F ′ −GH ′ −HG′ = 0 (2.34a)

G′ − 2k1

(k3− 2k1)
F ′G = 0 (2.34b)

H ′ + 2k1

k3
F ′H = 0. (2.34c)

By following the steps given in case (i) one can obtain the following solution of (2.34) as

q = c

t
− 1

k1t

∫ t

g(t ′) dt ′ (2.35a)

r =
(
c

I3
− I1I3

)
t (k3−2k1)/k1 (2.35b)

s = I3t
−k3/k1 (2.35c)

whereI1, I2, I3 are constants andc = log(I2/I
k3/2k1
3 ).



3268 M Senthil Velan and M Lakshmanan

Case (vii).k1, f (x) = 0
In this case we obtain a particular solution of the form

q = − 1

k2

∫ t

g(t ′) dt ′ + logGk3I2/2k2 (2.36a)

r = G(x) exp

[
k3t

k2

]
(2.36b)

s = I1

G(x)
exp

[
−k3t

k2

]
(2.36c)

whereg(t) andG(x) are arbitrary functions oft and x, respectively, andI1 and I2 are
constants.

3. Invariance analysis of a new coupled hyperbolic variational equation

Recently Hunter and Zheng have investigated the nonlinear PDE [15]

uxxt + 2uxuxx + uuxxx = 0 (3.1)

and shown that equation (3.1) is a completely integrable, bi-variational and bi-Hamiltonian
system. This equation arises in two different physical contexts. It describes the propagation
of weakly nonlinear orientation waves in a massive nematic liquid crystal director fixed and
it is also the high-frequency limit of the Camassa–Holm (CH) equation [23]

ut + 2κux + 3uux = uxxt + 2uxuxx + uuxxx (3.2)

which is an integrable model equation for shallow water waves. Earlier [24] we investigated
the invariance properties of the CH equation and proved that the CH equation admits a three-
parameter symmetry group with the infinitesimals

ξ1 = a1κt + a2 ξ2 = a1t + b1

and

φ = −a1(κ + u) (3.3)

wherea1, a2 andb1 are arbitrary constants andκ is the system parameter. Now we wish to
show that the limiting case of the CH equation admits an infinite-dimensional Lie algebra.

The invariance of equation (3.1) under the infinitesimal transformation

x −→ X = x + εξ1(t, x, u) (3.4a)

t −→ T = t + εξ2(t, x, u) (3.4b)

u −→ U = u+ εφ(t, x, u) (3.4c)

leads to the expressions

ξ1 = xḟ (t)+ k1x + g(t) (3.5a)

ξ2 = f (t) (3.5b)

φ = k1u+ xf̈ (t)+ ġ(t) (3.5c)

wherek1 is an arbitrary constant,f (t) andg(t) are arbitrary functions oft and a dot denotes
differentiation with respect to the variablet . The general element of the Lie algebra can be
written as

V = V1(f )+ V2(g)+ V3 (3.6)
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wheref andg are arbitrary functions oft and

V1(f ) = xḟ (t) ∂
∂x
+ f (t) ∂

∂t
+ xf̈ (t) ∂

∂u
(3.7a)

V2(g) = g(t) ∂
∂x
+ ġ(t) ∂

∂u
(3.7b)

V3 = x ∂
∂x
+ u ∂

∂u
. (3.7c)

The commutation relations between the Lie vector fields lead to an infinite-dimensional Lie
algebra of the form

[V1(f1), V1(f2)] = V1(f1ḟ2− f2ḟ1) (3.8a)

[V2(g1), V2(g2)] = 0 (3.8b)

[V1(f ), V2(g)] = V2(f ġ − gḟ ) (3.8c)

[V1, V3] = 0 (3.8d)

[V2, V3] = V2. (3.8e)

By restricting the arbitrary functionsf and g to Laurent polynomials again, we obtain a
Virasoro–Kac–Moody-type subalgebra of the form

[V1(t
m), V1(t

n)] = (n−m)V1(t
n+m−1) (3.9a)

[V2(t
m), V2(t

n)] = 0 (3.9b)

[V1(t
m), V2(t

n)] = (n−m)V2(t
n+m−1). (3.9c)

The similarity variables associated with the infinitesimal symmetries (3.5) can be found
by solving the characteristic equation. For the present case they turn out to be

z = x

f (t)
exp

[
−
∫ t k1

f (t ′)
dt ′
]
−
∫ t ′ g(t ′)

f 2(t ′)
exp

[
−
∫ t k1 dt ′′

f (t ′′)

]
dt ′ (3.10a)

F =
(
u− g(t)

f (t)

)
exp

[
−
∫ t k1

f (t ′)
dt ′
]

−(ḟ + k1)

∫ t g(t ′)
f 2(t ′)

exp

[
−
∫ t ′ k1

f (t ′′)
dt ′′
]

dt ′ − zḟ . (3.10b)

Under this set of similarity variables the PDE (3.1) can be written as

(F − k1z)F
′′′ + 2F ′F ′′ − k1F

′′ = 0. (3.11)

Integrating equation (3.11) once, we find

FF ′′ − zF ′′ + 1
2F
′2 = I1 (3.12)

whereI1 is an integration constant. Rewriting equation (3.12), we get

(z − F)F ′′ = Î1+ F ′2
2

. (3.13)

Integrating equation (3.13) again, we obtain [25]

(z − F)(F ′2+ Î1) exp

[
−2 tan−1

(
F ′

Î1

)]
= I2 (3.14)

whereI2 is a second integration constant andÎ1 = −(I1/2). Integrating equation (3.14) we
can obtain the solution for the ODE (3.11).
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3.1. Special group invariant solutions

It is interesting to note that in addition to the above general symmetry reduction one can
also consider special cases.

Case (i). The invariance of equation (3.1) under the infinitesimal symmetriesf (t) andg(t)
alone(k1 = 0) leads to the similarity variables

z = x

f (t)
−
∫ t g(t ′) dt ′

f 2(t ′)
(3.15a)

F = u− ḟ
∫ t g(t ′) dt ′

f 2(t ′)
− g(t)

f (t)
− zḟ . (3.15b)

The corresponding ODE turns out to be

FF ′′′ + 2F ′F ′′ = 0. (3.16)

Integrating equation (3.16) twice we get

FF ′2 = I1F + I2 (3.17)

whereI1 andI2 are integration constants. ChoosingI1 = −1 we can write the solution as
[25]

F ′ = cotu F = I2 sin2 u z = I2(u− sinu cosu)+ I3 (3.18)

wherez is given in equation (3.15).

Case (ii). Similarly the invariance of the equation (3.11) under the infinitesimal symmetries
f (t) andk1 alone(g(t) = 0) leads to the ODE

(F − k1z)F
′′′ + 2F ′F ′′ − k1F

′′ = 0 (3.19)

which is the same as that of equation (3.11).

Case (iii). Finally the invariance of equation (3.1) under the infinitesimal symmetriesg(t)

andk1 alone(f (t) = 0) leads to the particular solution for equation (3.1) of the form

u = −ġ(t)
k1
+ w(t)(c1x + g(t)) (3.20)

wherew andg are arbitrary functions oft .

Case (iv). The similarity reduction under the possibilityk1, f (t) = 0 (g(t) 6= 0) leads to
the particular solution of the form

u = w(t)+ ġ(t)
g(t)

x (3.21)

wherew is an arbitrary function oft . This exhausts all possible similarity reductions.

4. Conclusions

In this paper, we have pointed out that the two new completely integrable PDEs, namely,
the new coupled integrable dispersionless equations and a nonlinear hyperbolic variational
equation, admit infinite-dimensional Lie algebras which is not a common occurrence
in (1 + 1) dimensions. This enables us to obtain a class of interesting solutions to
these equations. The connection between these infinite-dimensional Lie algebras and the
integrability is a further interesting problem to study. Furthermore, it is also of interest to
study the non-classical symmetries associated with these systems, which we are pursuing at
present.
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